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Abstract

The leapfrog scheme is a commonly used second-order difference scheme for
solving differential equations. If Z(¢) denotes the state of the system at time
t, the leapfrog scheme computes the state at the next time step as Z(¢t41) =
H(Z(t),Z(t—1),W), where H is the nonlinear timestepping operator and W are
parameters that are not time dependent. In this article, we show how the associa-
tivity of the chain rule of differential calculus can be used to compute a so-called
adjoint =7 - (dZ(t)/d[Z(0), W]) efficiently in a parallel fashion. To this end, we (1)
employ the reverse mode of automatic differentiation at the outermost level, (2)
use a sparsity-exploiting incarnation of the forward mode of automatic differenti-
ation to compute derivatives of H at every time step, and (3) exploit chain rule
associativity to compute derivatives at individual time steps in parallel. We report
on experimental results with a 2-D shallow-water equation model problem on an
IBM SP parallel computer and a network of Sun SPARCstations.

1 Introduction

The leapfrog method 1s a commonly used second-order method for solving differential
equations (see, for example, [22, pp. 53 ff.] , [8]). Let Z(t) and Z(t — 1) denote the

*This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Computational and Technology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.



current and previous state of a time dependent system, respectively. Except for possibly
the initial steps, a leapfrog scheme computes the state Z(¢ + 1) at the next time step as

ZA+1)=H(Z@®),Z(t-1), W), (1)

where 7 € R", W € IRP (typically n > p) are system parameters that are not time
dependent and H is the nonlinear operator advancing the system state. That is, the
code has the structure shown in Figure 1 (7" denotes the last time step).

Initialize Z(0) and W.
Compute Z(1).
fort =1to 1T do
ZA+ 1) =HZQ), 72t -1),W);
Z(t=1) = Z(1); Z(t) = Z(t + 1);
end do

Figure 1: Schematic of a Leapfrog Scheme

Let » : R” — TR be a scalar-valued function that is applied to Z(7). In many
applications, such as data assimilation, r is a relatively simple merit function, which
assesses the distance of the current state with respect to some desirable state. Typically,
one is interested in

dr
a12(0), W] @)

The quantity (2) is a “long gradient” of size n + p, and, usually, so-called adjoint ap-
proaches are employed for its efficient computation. Adjoint approaches can ideally
compute the gradient at a floating-point cost that is a few times that of the function,
independent of n+p, and can be derived either mathematically from the definition of the
underlying operator (the continuous adjoint) or by employing the so-called reverse mode
of automatic differentiation on the computer code (the discrete adjoint). For details on
development and use of adjoint approaches see, for example, the articles in [1, 20, 21].

The ADOL-C [15], GRESS [19], Odyssee [23], and TAMC [12] tools implement the re-
verse mode of automatic differentiation in an automated fashion. However, as explained,
for example, in [6], the implementation of the reverse mode requires one to remember
or recompute all intermediate values that may nonlinearly impact the final result. That
18, if a variable 1s assigned 100 different values in the course of the execution of a code,
we may need to remember all 100 values that it assumed during its lifetime. A snap-
shotting scheme proposed by Griewank [13] suggests a way to overcome the potentially
enormous storage requirements that would be induced by straightforward tracing. This
approach is being adopted in reverse mode tools [16, 3], but the fact that potentially
many values need to be stored and/or recomputed still implies that the reverse mode



may require considerable and unpredictable storage requirements to achieve the desired
low floating-point complexity.

In contrast, the so-called forward mode of automatic differentiation which is em-
ployed, for example, at the outermost level of the ADIFOR, [6] and ADIC [9] tools, has
predictable storage requirements. When s directional derivatives are computed, mem-
ory and runtime increase by a factor that is at most O(s), independent of how linear or
nonlinear the code is or how often storage is overwritten. Moreover, this upper bound
may be grossly pessimistic. In particular, by exploiting sparsity inherent in many large-
scale optimization problems, gradients of such problems can be efficiently computed with
forward-mode based tools [5, 7]. More in-depth information on automatic differentiation
can be found in [4, 14], and an overview of currently available AD tools is provided at
URL http://www.mcs.anl.gov/Projects/autodiff/AD Tools.

In this article, we show how the reverse and forward modes of automatic differen-
tiation can be combined to compute the adjoint quantity (2). In the literature, the
term “adjoint” is often used somewhat loosely to denote both the gradient to be com-
puted and the either continuous or discrete adjoint approach that will be employed in
its computation. To distinguish our work, where we compute the same gradient as in
a true adjoint approach but with a different methodology, we call it a “pseudo-adjoint”
approach. The main algorithmic ingredients of our approach are

e the exploitation of the sparsity of the Jacobian that is associated with the operator
H 1in typical stencil-based computations,

e the concurrent computation of derivatives of H at different time steps, and

e a reverse-mode harness that accumulates the derivatives from different time steps
in an efficient fashion.

This article is structured as follows. In the next section, we review the capabilities of
current forward-mode based AD tools with respect to exploiting sparsity in computing
Jacobians, and we show how the Jacobians associated with individual time steps can
be computed in parallel. In Section 3, we show how the desired adjoint quantity (2)
can be computed in a recursive fashion through (in essence) a series of sparse matrix-
vector multiplications. In Section 4, we present experimental results with both a serial
and a parallel implementation of this scheme on an IBM/SP parallel computer and a
network of Sun SPARCstations. Throughout, we use a 2-D shallow-water equations
model problem [25, 24] for illustration. Lastly, we summarize our results.



2 Computing Sparse Timestep Jacobians in Parallel

In typical stencil-based PDE solution schemes, one gridpoint is updated based on the

H
values of a fixed number of surrounding gridpoints. Thus, the Jacobians 220 and
0H .
az(t—1)
dzZ(t+1) o0H dZ(t) n OH dzZ(it—-1) 0H dw (3)

d[2(0),W] ~ 9z(@t) d[Z(0),W]  az(t—1) d[Z(0),W] oW d[2(0), W]

. . 0H . . .
will be sparse n x n matrices. In contrast, T is likely to be a dense n x p matrix.

Equation (3) was obtained by differentiating Equation (1) with respect to some set
of parameters X, and all partial derivatives are evaluated at (Z(t),Z(t — 1), W). To
illustrate, we consider a 2-D shallow-water equations model problem [24, 25].

This code is simple but employs a leapfrog difference scheme and a stencil-based

0H 0H o0H
9Z(t) 0Z(t—1) 0W.

has at most 13 nonzeros and the nonzero structure of this matrix for ¢ > 1 is shown in
Figure 2 for n = 363 and s = 4. The total number of nonzeros is 3,101.

propagation operator. In this particular example, any row of (
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Figure 2: The Sparse Jacobian Associated with the Shallow Water Equations Model

H H
In [11], it was shown how the sparsity of 66Z(t) and 3 Za(t ) could be exploited to




efficiently compute the derivatives of Z(T') with respect to some of the initial values X,

say, with automatic differentiation. In this approach, the derivative-augmented version
g_H of H,

[Z(t+1),9- 20+ 1)) = g-H(Z(t),9-2(t), Z(t — 1), 92 — 1), W, g_W). (4)
which computes both Z(¢ + 1) as in (1) and

0H o0H 0H

g-Z(t+1)= 8Z—(t)g_ (t) + mg—z(t -1+ aw -

w ()

H
(all partial derivatives are evaluated at (Z(t), Z(t — 1), W)), was used to compute OH

AR
H H dZ(t+1
3 Z?t —Ty and SW explicitly at each time step, and the overall derivatives %

were computed explicitly through matrix-matrix multiplications, as suggested by Equation(3).

This approach can use either the SparsLinC library, which exploits sparsity with-
out any prior knowledge of the sparsity structure, or a so-called compressed Jacobian
approach, which calls SparsLinC once to determine the sparsity structure and then com-
putes a linear combination of columns of the original Jacobian based on a graph-coloring

OH OH 0OH
dZ1) 0Z(t—1) oW
independent of n and dependent only on the cost associated with the PDE stencil.

scheme. In either case, ( ) can be computed at a cost that is

OH OH 0OH
dZ1) 0Z(t—1) oW
as the “timestep Jacobian” associated with timestep t. We note that, for a particular
time step ¢, we can compute its associated timestep Jacobian once Z(¢) (and hence
Z(t — 1)) has been computed. That is, to compute the Jacobian associated with a
particular time step, we require only that the simulation has progressed up to this time

In the sequel, we refer to ( ) evaluated at (Z(1), Z(t — 1), W)

step; we do not require the derivatives of previous time steps. Thus, with P processors,
these individual time step Jacobians can be generated in the parallel fashion shown in
Figure 3. Here, we precompute and store all time steps and the associated states Z(t) and
then compute the derivative matrices in a round-robin fashion. Alternatively, processes
can be dynamically assigned the time steps whose Jacobian they are responsible for.
The mypid() function returns the unique ID number of a particular process between 0
and P — 1. Suitable invocations of g_H to exploit the sparsity of the timestep Jacobian
are detailed for this particular example in [11] and, in general, in [2, 7]. The scheme
outlined in Figure 3 allows us to generate all timestep Jacobians in a parallel fashion.
The additional floating-point and memory complexity is a fixed multiple of that of the
complexity for H, depending on the particular stencil, but not the size of the grid. We
also note that a production version of this approach would incorporate the snapshotting
approach suggested by Griewank [13] to decrease the memory requirements associated
with storing timestep Jacobians. We omitted this aspect in our implementation in order
to concentrate on the novel ideas.



Initialize Z(0) and .
Compute and save Z(1).
fort=1to T do
ZA+OH)=HZQ), 72t -1),W);
Save Z(t + 1);
Z(t=1) = Z(1); Z(t) = Z(t + 1);
end do
fort=1to T do
if ( mod(t,P) == myid()) then
if (t == ) then
Compute and store ( dg—(l) — )
else
Invoke g H(Z(t),9-7Z(t), Z(t — 1),¢9-Z(t — 1), W, g W) with suitable

initializations for ¢_7(¢), g-Z(t — 1), and g_WW to compute
O0H 0H 0H )

QZ(t) 0Z(t—1) oW

Z{t+1)aswellas g Z(t+ 1) = (

, OH OH ]
"0Z(t) 0Z(t—1) oW

Store [

end if
end if
end do

Figure 3: Schematic for Computing Timestep Jacobians in Parallel




3 A High-Level Adjoint Recursion

Returning to our original problem of computing the adjoint (2), we observe that differ-
entiation of (1) implies

_dr _ _dr dZ(D)
d[Z(0),W] — dZ(T) dZ(0)
dZ(T - 1) d Z(T —2)
= xT”.i +yTn7 +an 5
DR A[200), W]y T ALZ(0), W, gy )
where, invoking (3), we have
o7 _ dr OH(Z(T =1),2(T - 2),W)
Ixn — dZ(T)an 6Z(T— 1) Tl><n’
o _ dr .8H(Z(T—1),Z(T—2,W) ind
1xn dZ(T) 9Z(T —2) Tl><n’
OH(Z(T -1),2(T—2),W)
w1Tx(n+p) = £ nxp( Opxn s Ipxp )

Here I is the identity, 0 is a zero matrix, and subscripts indicate the size of matrices. For
clarity we also indicated the arguments for which the partial derivatives were computed.
Note that x and y are n-vectors, while w is a vector of size n + p. The computation of
2T and y7 involves two multiplications of sparse n x n matrices with a dense n-vector,
the computation of w the left-multiplication of a dense n x p matrix by a row—v(ector o)f
. . . r dZ(T -1

length n. If we recursively apply this approach to the computation of z 102000, W]
dZ(T —2)

d[z(0), W]’
matrix-vector multiplications involving the timestep Jacobians that were computed in
Figure 3. The resulting algorithm is shown in Figure 4. Note that for { == 1, the

computation of y and z involves the left-multiplication of an n x (n + p) matrix with an

and yT - we will form the desired adjoint vector through a chain of sparse

n-vector. To compute we then execute the algorithm in Figure 3, followed

dr
d[Z(0), W]’
by an invocation of

d
leapfrog_adjoint( ﬁ(rT)’ T-1).

If n > p, the main work in the scheme outlined in Figure 4 at every time step consists
of two left-multiplications of a sparse n x n matrix with an n-vector and the generation
of two recursive processes. Thus, a total of 27~! n x n sparse matrix-vector multiplies
will be computed.

We can reduce the number of matrix-vector multiplies by turning the leapfrog scheme
into an Euler scheme. To this end, we adjoin successive time steps and define an extended



function leapfrog_adjoint(z, )
if (¢> 1) then
r_ v OH
vo=r 6Z( ) /* left-multiplication of sparse */
P ) /* n X n matrix by an n vector */
0 ngt

w? Opxn s Loxp )

y= leapfrog adjomt(y,t 1);
z = leapfrog_adjoint(z,? — 1);
result = w+ y + z;

} /* binary recursion */

else
dzZ(1)y dZ(1)
=" | —=, =2 ;
resu T ( 1700) d ;
end if
return(result);

end function

Figure 4: Recursive Evaluation of Adjoint for a Leapfrog Scheme

state vector Z(t) = (Z(¢), Z(t — 1)). We compute the new next state Z(¢t + 1) as

Z0+1) = 1), 2(1))
H(Z(t), Z(t = 1), W), Z(1))

2(), ( - 1), W)

with the “new” update operator H

_ an(2n+p)
H2n><(2n+p) =
Lnxn 0n><(n+p)

Differentiating (6) with respect to [Z(0), W], we obtain

dzZ(t+1)  0H dZ(t) oH dWw
d[2(00,W] ~ 8700 d[Z0), W] " aw  d[Z(0), W]’




which, taking into account (7), is equivalent to

d7(t+1) oH  9H 42
d [g (ZO(E)W] _ | 7z aza=1 |. dd[ggf)’ vlv)] )
4[7(0), W] fo e 4[2(0), W]
o1 dw
+ Oanz ( d12(0), W] )

function euler_adjoint(7, ¢)
if (¢>1) then
O0H 0H
=z | 0Z(t) 90Z(t—-1)

Inxn Onxn
oOH

o’ =7 oW '<0pxna1pxp)5
Onxp

y = euler_adjoint(y,t — 1); /* linear recursion */
result = w + v,
else

dz(1)  dz(1)

resull. =77 - dz(0) dwW :
Ly sen Onxp

end if

return(result);

end function

Figure 5: Recursive Evaluation of Adjoint for an Euler Scheme

The recursive evaluation of an adjoint associated with Z is shown in Figure 5. While
all the extended state vectors are of length 2n, the exploitation of the matrix structure
apparent in (9) implies that the amount of linear algebra work per time step remains,
to first order, unchanged. However, since we now have a linear recursion, the overall

number of matrix-vector multiplications is 2(7'—1). To compute , we would

dr
d[Z(0), W]

then execute the algorithm in Figure 3, followed by an invocation of

dr

euler_adjoint(< a1’ O1xn ) ,T—1).



To summarize, the work required for the generation of the timestep Jacobians, as
illustrated in Figure 3, is a fixed multiple (independent of n) of the work to evaluate H.
This holds with respect to both runtime and memory, since we employ a sparse variant of
the forward mode with predictable memory requirements. The accumulation scheme in
Figure 5, in contrast, is an incarnation of the reverse mode of automatic differentiation
for an Euler scheme at a level where we consider H to be an elementary operator. The
second-order leapfrog difference scheme was converted to a first-order Euler scheme by
adjoining successive time steps. Efficiency was maintained by exploiting the special
structure of the Jacobians of the resulting Euler scheme.

4 Experimental Results

We implemented the pseudo-adjoint approach on an IBM SP computer and a network
of Sun SPARCstations. For the problems shown in Table 1, we computed the sensitivity
of the value of Z(T') with respect to interior gridpoint number 101, that is, r = eyg1,
where e; 18 the ith canonical unit vector, for a period of 7' = 60 time steps.

Table 1: Shallow Water Equations Models

|GridSize| n |
11 x 11 3x11%11 =363
16 x 16 316+ 16 = 768
21 x 21 3x21 %21 =1323

IS B

We computed the sparse Jacobian shown in Figure 2 using SparsLinC or, alterna-
tively, using SparsLinC in the first time step to determine the sparsity structure and then
using the compressed Jacobian approach in subsequent time steps. The latter approach
is feasible here because the sparsity pattern does not change for ¢ > 2. In contrast,
continuous use of SparsLinC could accommodate varying sparsity patterns.

4.1 Serial Implementation

Table 2 shows (1) the overall runtime of the black-box ADIFOR approach, (2) the
time spent by the pseudo-adjoint approach in the computation of the sparse Jacobian,
using either the SparsLinC or the compressed Jacobian approach, and (3) the time
spent in matrix-vector multiplications. In the serial implementation, the initial function
computation loop shown in Figure 3 is not present. The code does a fair amount of
copying, and these memory accesses account for the considerable difference between
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the Jacobian computation and matrix-vector multiplication times. Table 3 contains a
summary of the memory requirements of these runs (the numbers for the IBM and Sun
platforms are similar).

Table 2: Serial Runtime for Pseudo-Adjoint Approach (in seconds)

IBM SP Node SPARCstation 5

11x11 16x16 21 x21 11 x 11

Black-Box ADIFOR | 4.24 36.68 71.98 26.63

Pseudo-adjoint Using SparsLinC
Total 6.90 27.52 69.46 13.94
Jacobians 4.90 17.77 42.98 12.26
Pseudo-adjoint Using Compressed Jacobian
Total 4.53 18.50 51.31 9.09
Jacobians 1.93 8.70 21.51 6.55
| Matrix-Vector Mult | 0.53 1.62 2.21 0.15 |

Table 3: Serial Memory Requirements for Pseudo-Adjoint Approach (in Mbytes)

| [11x 11 16x16 21 x 21 |

Black-Box ADIFOR, 4.70 18.82 53.31
SparsLinC 4.67 12.23 27.15
Compressed Jacobian 4.81 12.46 27.50

We see that compared with the black-box ADIFOR approach, which propagates n+p
derivatives for each of the n grid points and hence has an O(n?) complexity with respect
to both memory and runtime, the pseudo-adjoint approach shows a much weaker rate of
growth since both the computation of the individual time-step Jacobians and that of the
sparse matrix-vector multiplies require O(n) memory and floating-point operations. For
example, while the pseudo-adjoint approach is slower than black-box ADIFOR for the
11 x 11 problem on the IBM, it beats ADIFOR on the 21 x 21 problem. We fare even
better on the SPARCstation, where vector operations are, in comparison with scalar
code, not executed as fast as on the IBM. For the larger problems, we also observe a
memory savings of a factor of almost two.

The code for the shallow water equations model problem is based on a five-point
stencil and updates the east and west wind components as well as the geopotential at
a cost of 59 flops per gridpoint. To simulate performance for a computationally more
intensive problem, where the computation of the sparse Jacobian corresponding to one
time step requires more work, we executed the code for one time step from 1 (the original
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problem) to 16 times. Thus, we increased the work required for black-box ADIFOR as
well as the timestep Jacobian by the repetition factor, while the cost of the matrix-
matrix multiply, the number of memory moves, and the memory requirements of the
code remain unchanged. The resulting computational behavior is shown in Figure 6.

Shallow Water Equations model (SWE) Shallow Water Equations model (SWE)

SparsLinC Compressed Jacobian
14.0

5.0
4.5
4.0
35

—+—Sun Sparc 5, SIZE = 11x11

12.0 4 [——SunSparcs, SIZE = 11x11

- =— IBM SP, SIZE = 21x21
10.0 4 +--IBM SP, SIZE = 16x16
— % - IBM SP, SIZE = 11x11

230 £ 1
2 é 8.0
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15 | o e 40 4 B
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1 2 4 8 16 1 2 4 8 16
Repetitions Repetitions

Figure 6: Serial Speedup of Pseudo-adjoint Scheme

Figure 6 shows that we can in fact obtain considerable speedup compared with
a black-box application of ADIFOR, in particular as the work per nonzero entry in
the timestep Jacobian increases. Computing Jacobians via SparsLinC is slower than
via the compressed Jacobian approach, so we observe less improvement for the “all-
SparsLinC” approach. In all cases, the percentage of time spent on the sparse matrix-
vector multiplications is less than 2% of the total time.

4.2 Parallel Implementation

The parallel implementation of the pseudo-adjoint scheme is shown in Figure 7. We have
three kind of processes. The timestep Jacobian processes implement the algorithm de-
picted in Figure 3, computing the timestep Jacobians at selected time steps and sending
them to the matriz-vector multiplication process, which receives them and stores them
in order. When all individual timestep Jacobians have been received, the matrix-vector
multiplication process performs the high-level reverse mode accumulation described in
Figure 5. The optional task manager process is employed in a heterogeneous system
where the round-robin approach of Figure 3 would lead to severe load imbalance. This
process keeps track of which timestep Jacobians have been computed and dynamically
assigns them as Jacobian processes become available. The public-domain MPICH [17]
implementation of the MPI message-passing interface was employed as parallel trans-
portation layer.

Figures 8 and 9 shows the performance of the 11 x 11 problem using the SparsLinC
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Jacobian Process 1

idle channel
’ paralel_to_ MM channel
\/ manager_to_parallel channel
Manager Matrix-V ector
H mEEn R .
(option) Multiplier
/\ manager_to_parallel channel
. paralel_to_ MM channel
idle channel .

Jacobian Process N

Figure 7: System Design of Time-Parallel Computation

approach with a repetition factor of 16. We visualized the computation with the Up-
shot [18] tool. In this example, we employ four processors. The matrix-vector multi-
plication and task manager tasks are unified in one process (number 0) that is located
on the same node as one of the derivative slaves (number 1-4). This approach does not
appreciably slow the derivative slave, since task management requires virtually no work,
and the matrix-vector process does not begin computing before all derivative slaves have
finished. In the top bar, “Compute_Der” indicates that a process is computing a timestep
Jacobian, “Compute_Fun” indicates that it is just running the simulation (this happens
only at the beginning), “Compute_Mat” indicates the series of matrix-vector multiplies
corresponding to Figure 1 (which is executed by process 0 only at the end and is hardly
visible because of to its short duration), “Receive” indicates that a process is waiting to
receive a message, and “Send” indicates the time spent in sending a message. Figures 8
and 9 show that despite the conceptually equal-sized jobs, severe load imbalance can
occur, however, a dynamic assignment of time steps for Jacobian computation leads to
a balanced computation.

In contrast, Figure 10 shows the performance of the compressed Jacobian approach
with a repetition factor of 16 on five processors of the IBM SP. Here we actually allocate
a separate node for the matrix-vector multiplication process, and we do not employ a
task manager. Note the two long “Compute_Der” blocks at the beginning of process 1,
while there is only one such block for the other Jacobian slaves. This is due to the fact
that the sparsity pattern changes between iteration 1 and subsequent iterations, and the
process that computes the Jacobian for time step 1 needs to invoke SparsLinC twice.
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Figure 8: Performance of SparsLinC Approach without Task Manager on Sun Network
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Figure 9: Performance of SparsLinC Approach with Task Manager on Sun Network
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Figure 10: Performance of Compressed Jacobian Scheme on IBM SP
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We see that in all these figures, the initial function computation and the matrix-
vector accumulation, which are the serial parts of the computation, take very little time
overall. Figure 11 shows the speedup we obtain on various numbers of processors on
the IBM SP and SPARCstation networks using a repetition factor of 1 and 16. The
more work that is done within one time step (the work that is performed in parallel),
the better we do. Hence, speedup increases with problem size and with the number
of repetitions. It trails off as there are not enough time steps to keep the derivative
slaves busy, in particular in the compressed Jacobian scheme, where all processes need
to invoke the relatively slow SparsLinC process only once at the beginning.

Shallow Water Equations model (SWE) Shallow Water Equations model (SWE)
grid size =11x11  n=3*11*11=363,p=4,s=n+p =367 grid size =16x16 n=3*16*16=768,p=4,s=n+p=772
machine: IBM RS/6000 machine: IBM RS/6000
12.0 12.0
10.0 - [—*—SparsLinC, Repetitions=1 ’,F 100 4 —e— SparsLinC, Repetitions=1 o
— m— SparsLinC, Repetitions=16 . — - SparsLinC, Repelitions=16 e
-- & --Compressed Jacobian, Repetitions=1 s - & --Compressed Jacobian, Repetitions=1 g
8.0 - -| =2 - Compressed Jacobian, Repetitions=16 - 8.0 { | =2 - Compressed Jacobian, Repetitions=16 L
Ey
3
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]
a
a
no. of derivative slaves no. of derivative slaves
Shallow Water Equations model (SWE) Shallow Water Equations model (SWE)
grid size =21x21 n=3*21*21=1323,p=4,s=n+p=1327 grid size = 11x11 n=3*11*11=363,p=4,s=n+p =367
machine: IBM RS/6000 machine: Sun SPARCstation
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Figure 11: Parallel Speedup of Reverse Mode of Grid-Size: 11 x 11 for IBM SP, 16 x 16
for IBM SP, 21 x 21 for IBM SP, and 11x11 for Sun Network. We denote by Sparse the
scheme of ADIFOR with full SparsLinC and Compressed Jacobian the hybrid scheme
of ADIFOR with SparsLinC for the first time step and compressed Jacobian for the
further time steps.

Note that, with respect to black-box ADIFOR, the speedup reported in Figure 11 is
in addition to the one reported in Figure 6. Thus, for example, compared with black-box
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ADIFOR, using eight processors with the compressed Jacobian approach for the 21 x 21
grid, runtime was reduced for the original problem from 72 seconds to 8.4, a speedup
of 8.5, and for the problem with 16 repetitions runtime was reduced from 931 to 13.4
seconds, a speedup of almost 70. For the 11 x 11 problem on a four-node Sun network,
this approach reduced runtime from 27 to 8.4 seconds (a speedup of 3.2) on the original
problem, and for the problem with 16 repetitions runtime was reduced from 327 to 15.3
seconds, a speedup of 21. In all cases, the derivative values agreed to machine precision.

5 Conclusions

In this article, we showed how to compute a so-called adjoint for a leapfrog difference
scheme with a combination of the forward and reverse modes of automatic differentiation.
We developed a generic harness that employs the reverse mode of automatic differenti-
ation at a level that considers the timestepping operator as an atomic operation, and
we evaluated the Jacobian associated with a particular timestep with a forward-mode
based tool, exploiting the sparsity of the underlying operator. Because of the associativ-
ity of the chain rule, Jacobians corresponding to different time steps can be evaluated
in parallel. The resulting scheme exhibits the predictable floating-point and memory
requirements of the forward mode, independent of the complexity and nonlinearity of
the underlying operator, while still retaining the floating-point efficiency of the reverse
mode.

The development of better automatic differentiation schemes is a current research
area. Hybrid schemes that combine the forward and hybrid modes have been shown to
hold considerable promise. For example, [10] shows that it can be advantageous to em-
ploy reverse-mode pieces inside a forward-mode-oriented driver. The paper [13] goes even
further and considers “freestyle” automatic differentiation schemes on a computational
graph representation of the program. The work we presented further shows the promise
of approaches that exploit chain rule associativity and employ principles of automatic
differentiation and automatic differentiation tools in a fashion that takes advantage of
user insight at a high level. For example, our algorithms assume a leapfrog (or Euler)
explicit difference scheme and a sparse timestep propagator H. The differentiation of H
itself 1s handled by automatic differentiation. In our view, work on easily retargetable
method-specific harnesses, such as the one we developed for a leapfrog scheme, and the
use of automatic differentiation tools, which are rapidly improving, will go a long way
toward “fast and easy” derivatives.
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